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4 Department of Physics, University of Western Ontario, London, ON, N6A 3K7, Canada

Received 4 July 2008, in final form 18 November 2008
Published 19 December 2008
Online at stacks.iop.org/JPhysCM/21/045301

Abstract
The effect of trigonal warping on the transmission of electrons tunneling through potential
barriers in graphene is investigated. We present calculations of the transmission coefficient for
single and double barriers as a function of energy, incidence angle and barrier heights. The
results show remarkable valley-dependent directional effects for barriers oriented parallel to the
armchair or parallel to the zigzag direction. These results indicate that electrostatic gates can be
used as valley filters in graphene-based devices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Monolayers of crystalline carbon (graphene) have been
intensively studied in recent years (for a review see, e.g., [1]).
That interest was spurred by the development of techniques for
the production of graphene [2–4], together with the observation
of striking electronic and mechanical properties in these
systems. Many of the unusual properties of graphene arise
from the gapless and approximately linear dispersion of charge
carriers at two inequivalent points (the K and K′ valleys) in the
vicinity of the Fermi energy. Energy gaps can arise in narrow
graphene ribbons [5], or by the coupling with impurities [6] or
with a substrate [7]. This control of the spectrum, together with
a large room-temperature carrier mobility, is expected to lead
to the creation of carbon-based nanoelectronic devices [8, 9].

The linear spectrum of carriers in graphene allows one to
describe the dynamics of the charge carriers in single layers
of graphene as that of massless fermions, with a ‘light speed’
equal to the Fermi velocity of the crystal. In this description,
the valley states, which can be seen as internal degrees
of freedom of the carriers, are independent and degenerate.
Theoretical work has shown that the valley degeneracy can be
lifted by the introduction of short range perturbations such as
defects, as well as by the influence of the edges of the graphene
sample.

There have been proposals to develop structures that
can selectively act on these valley states, in order to
create ‘valleytronic’ devices [10], in analogy with spintronic

applications. Most proposals require the use of valley-
selective interaction of carriers with the edges of graphene
point contacts. In parallel to that, it has been shown that
the tunneling of charge carriers through potential barriers in
graphene can be quite distinct from that of a conventional
2D electron gas. In particular, the transmission coefficient
displays a strong angular dependence for both barriers and
wells, with the barrier becoming completely transparent at
normal incidence (Klein paradox) [11–13, 15]. A recent
paper [14] investigated the propagation of electrons through
quantum structures in graphene including the effect of trigonal
warping (TW). This effect is a modification of the conical
dispersion of the carriers as the energy scale increases, due to
the symmetry of the crystal lattice. In their calculation, the
authors assumed that the transmission coefficient would not be
significantly affected by the inclusion of TW and considered
only the dependence of the carrier group velocity on the
potential. In this work we show that this assumption does not
hold in general, and that the transmission probability can in
fact be substantially modified by TW. The results show that the
inclusion of TW introduces an anisotropy in the transmission
that is valley-dependent and thus can be used as an alternative
way of creating a valley-polarized current in graphene.

The energy of the carriers in single-layer graphene can be
obtained from a tight-binding model that, in the presence of a
potential U , can be expressed as

E = ±h̄vF

√
k2(1 − 3skx a/2) + 2sk3

xa + k4a2/16 + U, (1)
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where s = 1(−1) for electrons in the K (K′) valley, vF

is the Fermi velocity in graphene (≈1 × 106 m s−1), k =√
k2

x + k2
y is the wavevector and a is the lattice parameter

of the crystal (a ≈ 0.142 nm). The kx (ky) component of
the momentum corresponds to propagation along the armchair
(zigzag) direction in the lattice (see figure 1(a)). In the
following calculations we assumed a defect-free graphene
sheet of infinite extension. Thus, we do not incorporate any
valley scattering effect.

2. Model

In order to obtain numerical results for the transmission
probability as a function of energy and momentum T (E, k) we
considered square potential barriers and imposed the continuity
of the wavefunction solutions at the barrier interfaces. For
the double barrier case, each potential barrier was assumed
to have heights Ua and Ub, and widths La and Lb, separated
by a distance W (see figure 1(b)). For the single barrier
case we set Ub = 0. The calculation of the transmission
coefficient is similar to the one described in [11], except that in
the present case, due to the TW effect, the results for large
potentials become sensitive not only to the direction of the
electron momentum with respect to the potential barrier but
also with respect to the lattice. We consider two cases, namely
(a) barriers aligned parallel to the x axis, which corresponds to
the armchair side of the lattice (see figure 1(c)) and barriers
parallel to the y axis, which corresponds to the zigzag side
(figure 1(d)).

2.1. The zigzag case

Let us first consider the case of barriers aligned parallel to the
y axis. In this case, the solutions inside and outside the barrier
are matched along the zigzag direction of the lattice. One then
has to find kx by solving the equation

a2

16
k4

x +
(as

2

)
k3

x +
(

1 + a2

8
k2

y

)
k2

x

−
(3

2
ask2

y

)
kx +

[
k2

y + a2

16
k4

y − (ε − u)2
]

= 0. (2)

A convenient way of solving the above equation is by an
iterative method, starting with

k2
x,0 = (ε − u)2 − k2

y − a2

16
k4

y (3)

and then using

k2
x,n+1 =

[
(ε − u)2 − k2

y − a2

16
k4

y

]
+

(3

2
ask2

y

)
kx,n

−
(a2

8
k2

y

)
k2

x,n −
(as

2

)
k3

x,n − a2

16
k4

x,n . (4)

A brief inspection of equation (4) shows that, for a given
energy, the values of kx are expected to differ depending
on s. However, equation (4) indicates that the transmission
should be expected to be invariant under a transformation
of the momentum component parallel to the barrier, ky →
−ky . It must be emphasized that, in the ballistic regime, the
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Figure 1. Schematic depiction of the double barrier system.
(a) Potential orientation and orientation of the lattice and
(b) potential parameters. (c) Barriers along the armchair and
(d) zigzag orientation.

transmission through a potential barrier is critically dependent
on the values of the normal component of the wavevector
(i.e. kx in this case) at each point, and also on whether
this wavevector component is real or imaginary. Therefore,
the valley asymmetry in the transmission must not depend
qualitatively on the particular shape of the potential barrier
interfaces, although it is expected to arise only for large values
of the barrier height.

2.2. The armchair case

Let us now consider potential barriers aligned parallel to the x
axis, which is along the armchair side of the lattice.

By solving equation (1) for the y component of the
wavevector one obtains

ky = ±
[
− 8

a2

(
1 − 3askx

2

)
− k2

x

± 8

a2

√(
1 − 3askx

2

)2 − k3
xa3s

2
+ a2

4
(ε − u)2

]1/2

, (5)

where ε = E/h̄vF and u = U/h̄vF. By taking the internal sign
as positive and expanding the internal square root, the above
expression can be approximated for small values of kxa as

ky = ±
√

(ε − u)2

(1 − 3askx
2 )

− k2
x . (6)

Thus, for a → 0, it gives ky = ±√
(ε − u)2 − k2

x . These
expressions show that the TW creates an anisotropy of the
dispersion, given that the value of ky is sensitive to the sign
of kx . It should be noticed that, in equation (5), a change of
sign for the valley label s is equivalent to a change of sign of
the momentum component parallel to the barrier interface (kx ,
in this case). Therefore, this anisotropy should be present in
transmission properties of electrons in potential barriers.
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Figure 2. Incidence angle dependence of the transmission coefficient
for a single barrier in the armchair orientation, for carriers associated
with K (solid black lines) and K′ (red dashed lines) valleys.
Parameters given in the text.

Figure 3. The same as figure 2 but now for a double barrier.

3. Results

3.1. The armchair case

As seen from equation (5), for the armchair case the value
of ky is sensitive to the sign of kx . A striking consequence
of that anisotropy is an asymmetry in the angular dependence
of the transmission, as shown in figure 2. The figure shows
the transmission coefficient for carriers with E = 50 meV,
interacting with a square barrier of Ub = 200 meV and
L = 500 nm. The solid line shows the results for s = 1
(i.e. K valley), whereas the dashed line corresponds to s =
−1 (K′ valley). The results show that the asymmetry of the
transmission becomes conspicuous for large incidence angles,
with the appearance of transmission peaks at different angles
for each valley label. Using a double barrier structure, this
valley filtering effect is enhanced for slanted incidence of the
electrons. This is shown in figure 3 where the transmission
is shown as a function of incidence angle (T (θ)) for a double
barrier with Ua = Ub = 300 meV, La = Lb = 50 nm and
W = 25 nm for carriers with E = 54 meV.

3.2. The zigzag case

For barriers aligned parallel to the y axis (zigzag orientation),
the asymmetry in the transmission occurs between incoming
electrons (i.e. moving ‘to the right’, with positive kx ) and
outgoing (moving ‘to the left’, with negative kx ) electrons.
The situation is reversed in each valley. Therefore, the
large potential steps created in p–n junctions at a armchair
orientation in graphene can create a valley-polarized current
by means of a valley-selective transmission. Figure 4 shows
results for a double barrier with Ua = Ub = 200 meV and

Figure 4. Transmission coefficient as a function of energy for a
double barrier along the zigzag orientation for carriers associated
with K (black solid line) and K′ (red dashed line) valleys for
(a) kx = 0.05 nm−1 and (b) kx = 0.01 nm−1.

Figure 5. Integrated transmission as a function of energy for a
double barrier in the zigzag orientation for carriers of K (black solid
line) and K′ (red dashed line) valleys for (a) Ua = Ub = 300 meV
and (b) Ua = Ub = 100 meV.

La = Lb = W = 100 nm where (a) ky = 0.05 nm−1

and (b) ky = 0.01 nm−1. The black solid line corresponds
to incoming (outgoing) and the red dashed line to outgoing
(incoming) carriers of the K (K′) valley.

The previous results for the transmission were calculated
for a fixed value of the y component of the momentum
and figure 4 indicates that the position and distribution of
the transmission peaks are momentum-dependent. In an
experiment, the relevant energy is the Fermi energy and
the transmission should be averaged over the Fermi surface.
Figure 5 shows results for the transmission integrated over all
incidence angles as a function of energy. These result were
calculated for two sets of double barriers with La = Lb =
50 nm and W = 100 nm with (a) Ua = Ub = 300 meV
and (b) Ua = Ub = 100 meV. The results in figure 5 show
that the valley asymmetry is strongly dependent on the barrier
height, becoming negligible for lower barriers. Figure 6 shows
a valley polarization factor, which was obtained from the ratio
between the integrated transmission probability for each valley
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Figure 6. Valley polarization calculated from the integrated
transmission for each valley as a function of barrier height for double
barriers in the zigzag orientation for (a) Ua = Ub and
(b) Ua = 300 meV.

(i.e. TK − TK′ ) and the total transmission (i.e. TK + TK′ ). In
this case we took E = 20 meV and the results are shown as a
function of the barrier heights for two cases, namely (a) Ua =
Ub and (b) Ua = 300 meV. In both cases La = Lb = 50 nm
and W = 100 nm. As can be seen, the degree of polarization
oscillates as the potential barriers are raised, with the valley
asymmetry becoming larger as the barrier heights increase.
The asymmetry was observed in the zigzag configuration for
single as well as double barriers, where the valley-selective
behavior was enhanced by resonance effects. Additionally,
when one barrier is kept fixed, the difference in transmission
for each valley oscillates, which raises the prospect of the
design of a tunable valley filter device. This asymmetry in
the integrated transmission does not arise in the armchair case,
since in that case TK(E, θ) = TK′(E, π − θ) as shown in
figures 2 and 3.

4. Conclusions

In summary, we demonstrated a valley-selective effect for the
transmission of carriers in graphene-based quantum structures.
The effect is a consequence of the valley asymmetry induced
by the trigonal warping of the carrier dispersion. It can be
enhanced by the use of multiple barriers and can be exploited
for the development of future valleytronic devices. We showed
the effect for square barriers but the results are also valid

for rounded barriers and the determining factor is the height
of the potential barriers and the orientation of the barriers
with respect to the lattice. Therefore, in the absence of
intervalley scattering, a system of two barriers in which the
first acts as a ‘polarizer’ and the second as an ‘analyzer’
allows the use of the valley degree of freedom as an additional
means of controlling the current in graphene-based devices.
Alternatively, one could employ potential barriers coupled to
graphene nanoribbons with zigzag edges. These are known
to support valley-polarized currents and a constriction on such
ribbons has also been proposed as valley filters [10]. The valley
polarization itself can be detected in graphene in contact with
superconductor electrodes [16].
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